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Competitive cluster growth in complex networks
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In this work we propose an idealized model for competitive cluster growth in complex networks. Each
cluster can be thought of as a fraction of a community that shares some common opinion. Our results show that
the cluster size distribution depends on the particular choice for the topology of the network of contacts among
the agents. As an application, we show that the cluster size distributions obtained when the growth process is
performed on hierarchical networks, e.g., the Apollonian network, have a scaling form similar to what has been
observed for the distribution of a number of votes in an electoral process. We suggest that this similarity may
be due to the fact that social networks involved in the electoral process may also possess an underlining

hierarchical structure.
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The sedimentation of new trends and ideas in large social
communities can have a profound impact in the life of indi-
viduals. An instance where the dynamics of opinion forma-
tion may be of major importance is the democratic elections
of representatives. In addition, in the electoral process every
agent is called to give her/his opinion in an anonymous way
and the statistical results are easily accessible [1]. This
makes elections ideal systems to researchers interested in
studying the process of opinion formation. Since, typically,
an individual is more likely to listen to someone they have a
personal contact with, the process may also be driven by a
mouth-to-mouth interaction besides from massive political
campaigns based on media programs. In this way, the spread-
ing of an opinion follows a pattern similar to the spreading of
an epidemic process [2]. One should also expect that the
particular structure of the network of contacts among the
agents of a society may have an impact on the way the opin-
ions propagate.

The intricate structure of the interactions of many natural
and social systems has been the object of intense research in
the new area of complex networks. Most of the effort in this
area has been directed to find the topological properties of
real world networks [3-7] and understanding the effects that
these properties cast on dynamical processes taking place on
these complex networks [8—11]. For instance, the small-
world characteristic [3], where each node of the network is
only a few connections apart from any other, permits a quick
spreading of information through the network, being funda-
mental in processes of global coordination [12] and feedback
regulation [13].

Another property commonly studied in complex networks
is the degree distribution P(k), that gives the probability with
which an arbitrary node is connected to exactly k other
nodes. One relevant characteristic often observed in complex
networks is a scale-free degree distribution [4], namely, a
distribution that follows a power law, P(k)~k~”, with an
exponent typically in the range 2 <y<3. Such broad degree
distribution has a dramatic effect in many dynamical pro-
cesses. In the spreading of infectious diseases, for example, it
has been shown that when the infection is mediated by a
scale-free network, any infection rate above zero results in a
positive fraction of infected individuals [14]. It was recently
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suggested that another universal characteristic of real-world
networks is a structure of communities, where smaller com-
munities in the network are joined to larger communities by
highly connected nodes that play the role of local hubs [15].
This structure may be related to the self-similar characteristic
observed in some complex networks [16].

In this Rapid Communication we investigate a dynamic
process of competitive cluster growth in complex networks.
In this process many alternative and self-excluding states are
accessible to the nodes of the network. We say that nodes in
the same state belong to a cluster, and each of these clusters
competes with the others to reach a larger part of the net-
work. This idealized mechanism can be thought of as a
model for a variety of different processes that take place in
real networks. For example, one can think of each cluster as
the part of a population that has been infected with a certain
strain of a virus. Alternatively, the clusters may represent
alternative opinions in a social group. We study the distribu-
tion of the fraction of the network occupied by an arbitrary
cluster. Our results show that the network topology has great
influence over the behavior of the cluster size distributions.

Our model for competitive cluster growth is described as
follows: In a fixed underlying network of interactions, each
agent starts undecided and eventually takes the opinion of
one of its decided neighbors. For simplicity, we assume that,
once the agent decides for one opinion, this opinion remains
unchanged during the growth process. The process is medi-
ated by a substrate network with N nodes; in the first mo-
ment, a number 7, of nodes is chosen at random to be the
seeds of the spreading process, with the density of seeds
being n,/N. Each seed will be the first node of a cluster.
Then, the clusters grow by incorporating nodes that are
neighbors of these seeds and have not yet been assigned to
any other cluster. Once a node is incorporated to a cluster it
will stay in this cluster until the end of the process, and only
the nodes not belonging to any of the existing clusters are
accessible to the growth process. We will refer to these as
accessible nodes. The growth process takes place in discrete
steps. At each step, we randomly select a pair of connected
nodes, one belonging to a cluster and the other that is acces-
sible to growth. The accessible node is subsequently incor-
porated to the same cluster as its neighbor. Figure 1 presents
a pictorial description of our growth model. We suggest that
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FIG. 1. (Color online) Pictorial description of our model for a
competitive cluster growth process. To make a clear picture of our
model, we used as a substrate network for the growth a third gen-
eration Apollonian network [19]. The matching graph form of this
network makes it particularly suitable for a plane representation. In
the first step of the growth model (a), a few nodes (the large circle,
square, triangle, and star) are chosen to be the seeds of the growing
clusters. Each of the seeds is the first node of a different cluster. All
the remaining nodes (small dots) do not get assigned to any of the
clusters in the beginning; these nodes will be the ones accessible to
the growth. The dashed lines link either a pair of nodes that already
belong to one of the clusters or a pair of nodes that are not in any
cluster yet. At this time step these lines do not participate in the
growth process. The thick lines link one of the seeds to an acces-
sible node, and any of the thick lines can be chosen with the same
probability to channel the growth of a cluster. In this way, the
growth rate of a particular cluster is proportional to its perimeter,
that is, the number of connections from one of the nodes already
incorporated into the cluster to an accessible node. In the second
step (b) a new node is incorporated into the cluster of squares and
new thick lines are added to the perimeter of this cluster. The pro-
cess continues until every one of the nodes has been incorporated
into one of the clusters (c). At this point the size of all the clusters
is computed.

this mechanism can be representative of some sort of greedy
process where large clusters, with many nodes, will have
more connections to accessible nodes and therefore tend to
grow faster and increase their perimeters even more. In this
way, our model resembles the preferential attachment model
for network growth [4]. However, the competitive growth
has significant differences from that mode, in the sense that
all seeds are present in the beginning of the process and also
the fact that some clusters will start to grow before others,
resulting in a variety of cluster sizes.

The choice of a particular topology for the network of
contacts should affect the growth process. The simplest
model for a network is probably the random network model
proposed by Erdos and Reny (ER) [17]. In this model, any
pair of nodes can be connected with probability p, and the
degree distribution follows approximately a Poisson form

with the average degree given by k=p(N—1). In Fig. 2 we
show the distribution of the fractions of the network corre-
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FIG. 2. (Color online) Normalized cluster size distributions ob-
tained for the competitive growth model under a random ER net-
work topology. These distributions were obtained for networks of
10° nodes. We performed a larger number of runs for the cases with
less competing clusters in order to have 10° cluster samples for each
case. The distributions obtained under this topology follow approxi-
mately an exponential distribution with a characteristic cluster size
depending on the number 7, of competing clusters. The dashed lines
are the functions nge™s". The continuous lines are a fit for the func-
tion P(n):Cn;_“/n‘V exp(—ngn), with the parameters C=0.85+0.03
and y=0.2+0.05 obtained for the collapsed data shown in the inset.
This figure shows that for the random networks the form of the
distribution is completely determined by the density of nodes cho-
sen to be seeds for the growth process.

sponding to each cluster P(n) when the spreading process
takes place on ER networks. In this case the cluster size
distributions are power laws with a small exponent bounded
by an exponential cutoff with a characteristic scale depend-
ing only on the density of competing clusters in the network.

Next, we study the cluster growth process on a scale-free
network. To build the scale-free network we use the so-called
preferential attachment method [4]. Different from the ran-
dom graph, the degree distribution of the networks built with
this model has a power-law form, p;(k) ~ k=7, with an expo-
nent y=3, followed by an exponential cutoff at a maximum
degree, k,,,,~N""1 [18]. Note that a cluster that incorpo-
rates one of the most connected nodes in the beginning of the
growth process will increase its growth rate by a large factor.
Thus, the long tail of this distribution may have a dramatic
effect on the cluster growth process. Indeed, the cluster size
distribution obtained when the spreading process is done in
the preferential attachment network also shows a power-law
tail, p(n) ~n~, with an exponent a=1.2 for the case with
n,=10? as seen in Fig. 3. Similar results were obtained for
the distributions of cluster sizes in the transient state of the
Snadj model [20]. Interestingly, the competing growth dy-
namics magnifies the effect of the scale-free distribution pro-
ducing distributions of cluster sizes that have smaller expo-
nents, and as a consequence, a slower decay than that
observed for the degree distribution. The scattering of the
data close to the limit n— 1 is due to statistical fluctuations
at this low frequency limit as well as to finite size effects.
The implication of these heavy-tailed distributions is that
now the average cluster size is not a characteristic scale for
the process since one finds, with relatively high frequency,
clusters that are orders of magnitude larger than the average.
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FIG. 3. (Color online) Normalized cluster size distributions ob-
tained when the growth process is performed in networks built with
the preferential attachment schema. We used networks with 107
nodes and obtained 10° cluster samples. Different from the case of
random networks, here we cannot produce a data collapse for the
distributions. We note, however, that for any value of n; we have a
broad distribution with clusters of all sizes ranging from just a few
nodes to most of the network. Due to network size constraints, the
distributions display a truncation in the limit of large cluster sizes.
As observed in the ER networks, the exponential truncation moves
to smaller cluster sizes as the number of seeds increases. The
continuous line is a power-law fit, P(n) ~n~¢, with the exponent
a=1.2 obtained for the scaling region of the distribution for
n,=10% The slope of the distribution becomes more steep as the
number of competing clusters in the network grows.

Although the preferential attachment model produces a
degree distribution similar to what is found in several real
networks, it does not display the self-similarity and hierar-
chical structure also observed in many of those networks. In
the work of Ravasz et al. [15], it was suggested that the
structure of a network could be probed in a quantitative way
by studying the cluster coefficient of its nodes. The cluster
coefficient of a node is defined as the probability that two of
its neighbors taken at random are connected. A signature of
the hierarchical structure would be a cluster coefficient pro-
portional to the inverse of the nodes degree c(k) ~k~' [15].
Both the preferential attachment and the random networks do
not present this property. A model that shows small-world
behavior, scale-free degree distribution, as well as a hierar-
chical structure is the recently proposed Apollonian network
[19]. This network is obtained by simply connecting the cen-
ter of the touching spheres that constitute an Apollonian til-
ing.

In order to test the effect of a hierarchical structure in the
cluster growth we implemented our model in the topology of
the Apollonian network. In Fig. 4 we show that the cluster
size distributions obtained for the clusters grown in this to-
pology follow power-law behavior with an exponent a=—1.
Such behavior can be understood with a simple scaling argu-
ment. Splitting the Apollonian network in the most con-
nected hubs one finds three smaller networks corresponding
to Apollonian networks of a lower generation. Each of these
pieces could be split again, producing nine smaller networks
with this hierarchical disassembly continuing down to the
level of single nodes. After the growth process is performed
in a large Apollonian network, one could measure the cluster
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FIG. 4. (Color online) Normalized cluster size distribution when
our model is performed on Apollonian networks. The distributions
were obtained with the 15th generation of the Apollonian network
that corresponds to N=7174456. Each curve was sampled from an
ensemble of 10° clusters. We observe a power-law decay with an
exponent a= 1. The continuous line is a fit for the scaling region of
data with n;=100 initial seeds. As in the case of the preferential
attachment networks, here we observe a truncation in the large clus-
ter size region of the distributions, with an onset controlled by the
number of seeds n,. The periodical steps observed in the shape of
the distributions are reminiscent of the self-similar structure result-
ing from the hierarchical construction of the Apollonian network.

sizes distribution for each of these generations. It should be
expected that, as one goes to higher generations, the distri-
butions approach a limiting form. Note also that only the
clusters that reach the three hubs in the corner of the net-
works are merged when one moves one generation up, and
only the size of these few clusters that reach these hubs
change from one generation to another. Thus, this process
can change the form of the distribution only in the limit of
very large clusters, where the frequency is of the order of the
inverse of the network size. This means that the distribution
of cluster fractions should obey approximately the following
similarity relation:

P(n)=3P(3n). (1)

A trivial solution for this similarity relation is the Dirac delta
&(n). We expect the distribution to assume this form if, with
probability one, the growth process produces one giant clus-
ter that incorporates a large fraction, n=1, as N grows. Be-
sides the delta function, any nontrivial function that satisfies
the similarity relation (1) should be of the form C/n, where
C is a constant. Although we have not proved that a giant
cluster does not appear, our numerical results indicate that, at
least for the densities of seeds we have investigated, this is
unlikely.

Intriguingly, the scaling found for the distributions ob-
tained with the Apollonian network is similar to those found
in the distribution of the number of votes per candidate in the
elections in Brazil [1]. This leads us to suggest that the uni-
versal behavior observed in the electoral processes may be
driven by an underlying hierarchical structure of the social
networks describing the interactions among voters.

In summary, we have introduced a model for competitive
cluster growth in complex networks. By means of numerical
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simulations, we have shown that the fraction of the network
accessed by each cluster follows a characteristic distribution
that depends on the particular topology of the network. For
the case of a random graph we found an exponential decay,
while for scale-free networks we found power-law decaying
distributions. These results show evidence that there is a
straight connection between heavy-tailed degree distributions
and power-law cluster size distributions. Although no general
scaling law can be found for the exponential crossover in the
large cluster region of the distribution, our results indicate
that the onset of the crossover is controlled by the density of
seeds ny,/N used in the growing process. In the particular
case of a hierarchical scale-free network, we observed a de-
cay with a governing exponent «=1. Based on this fact, we
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suggested that the distributions we obtained with our model
resemble those of the fraction of votes per candidates ob-
served in the proportional elections in Brazil [1]. In a future
work, we intend to investigate the presence of hierarchical
structures in the social network governing the process by
which voters reach their decisions.
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